just now

AF - Measuring and Improving the Faithfulness of Model-Generated Reasoning by Ansh Radhakrishnan

<a href="https://www.alignmentforum.org/posts/BKvJNzALpxS3LafEs/measuring-and-improving-the-faithfulness-of-model-generated">Link to original article</a><br/><br/>Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Measuring and Improving the Faithfulness of Model-Generated Reasoning, published by Ansh Radhakrishnan on July 18, 2023 on The AI Alignment Forum. TL;DR: In two new papers from Anthropic, we propose metrics for evaluating how faithful chain-of-thought reasoning is to a language model's actual process for answering a question. Our metrics show that language models sometimes ignore their generated reasoning and other times don't, depending on the particular task + model size combination. Larger language models tend to ignore the generated reasoning more often than smaller models, a case of inverse scaling. We then show that an alternative to chain-of-thought prompting - answering questions by breaking them into subquestions - improves faithfulness while maintaining good task performance. Paper Abstracts Measuring Faithfulness in Chain-of-Thought Reasoning Large language models (LLMs) perform better when they produce step-by-step, "Chain-of -Thought" (CoT) reasoning before answering a question, but it is unclear if the stated reasoning is a faithful explanation of the model's actual reasoning (i.e., its process for answering the question). We investigate hypotheses for how CoT reasoning may be unfaithful, by examining how the model predictions change when we intervene on the CoT(e.g., by adding mistakes or paraphrasing it). Models show large variation across tasks in how strongly they condition on the CoT when predicting their answer, sometimes relying heavily on the CoT and other times primarily ignoring it. CoT's performance boost does not seem to come from CoT's added test-time compute alone or from information encoded via the particular phrasing of the CoT. As models become larger and more capable, they produce less faithful reasoning on most tasks we study. Overall, our results suggest that CoT can be faithful if the circumstances such as the model size and task are carefully chosen. Question Decomposition Improves the Faithfulness of Model-Generated Reasoning As large language models (LLMs) perform more difficult tasks, it becomes harder to verify the correctness and safety of their behavior. One approach to help with this issue is to prompt LLMs to externalize their reasoning, e.g., by having them generate step-by-step reasoning as they answer a question (Chain-of-Thought; CoT). The reasoning may enable us to check the process that models use to perform tasks. However, this approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case. To improve over the faithfulness of CoT reasoning, we have models generate reasoning by decomposing questions into subquestions. Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT while improving the faithfulness of the model's stated reasoning on several recently-proposed metrics. By forcing the model to answer simpler subquestions in separate contexts, we greatly increase the faithfulness of model-generated reasoning over CoT, while still achieving some of the performance gains of CoT. Our results show it is possible to improve the faithfulness of model-generated reasoning; continued improvements may lead to reasoning that enables us to verify the correctness and safety of LLM behavior. Externalized Reasoning Oversight Relies on Faithful Reasoning Large language models (LLMs) are operating in increasingly challenging domains, ranging from programming assistance (Chen et al., 2021) to open-ended internet research (Nakano et al., 2021) and scientific writing (Taylor et al., 2022). However, verifying model behavior for safety and correctness becomes increasingly difficult as the difficulty of tasks increases. To make model behavior easier to check, one promising approach is to prompt LLMs to produce step-by-s...

First published

07/18/2023

Genres:

education

Listen to this episode

0:00 / 0:00

Summary

Link to original articleWelcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Measuring and Improving the Faithfulness of Model-Generated Reasoning, published by Ansh Radhakrishnan on July 18, 2023 on The AI Alignment Forum. TL;DR: In two new papers from Anthropic, we propose metrics for evaluating how faithful chain-of-thought reasoning is to a language model's actual process for answering a question. Our metrics show that language models sometimes ignore their generated reasoning and other times don't, depending on the particular task + model size combination. Larger language models tend to ignore the generated reasoning more often than smaller models, a case of inverse scaling. We then show that an alternative to chain-of-thought prompting - answering questions by breaking them into subquestions - improves faithfulness while maintaining good task performance. Paper Abstracts Measuring Faithfulness in Chain-of-Thought Reasoning Large language models (LLMs) perform better when they produce step-by-step, "Chain-of -Thought" (CoT) reasoning before answering a question, but it is unclear if the stated reasoning is a faithful explanation of the model's actual reasoning (i.e., its process for answering the question). We investigate hypotheses for how CoT reasoning may be unfaithful, by examining how the model predictions change when we intervene on the CoT(e.g., by adding mistakes or paraphrasing it). Models show large variation across tasks in how strongly they condition on the CoT when predicting their answer, sometimes relying heavily on the CoT and other times primarily ignoring it. CoT's performance boost does not seem to come from CoT's added test-time compute alone or from information encoded via the particular phrasing of the CoT. As models become larger and more capable, they produce less faithful reasoning on most tasks we study. Overall, our results suggest that CoT can be faithful if the circumstances such as the model size and task are carefully chosen. Question Decomposition Improves the Faithfulness of Model-Generated Reasoning As large language models (LLMs) perform more difficult tasks, it becomes harder to verify the correctness and safety of their behavior. One approach to help with this issue is to prompt LLMs to externalize their reasoning, e.g., by having them generate step-by-step reasoning as they answer a question (Chain-of-Thought; CoT). The reasoning may enable us to check the process that models use to perform tasks. However, this approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case. To improve over the faithfulness of CoT reasoning, we have models generate reasoning by decomposing questions into subquestions. Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT while improving the faithfulness of the model's stated reasoning on several recently-proposed metrics. By forcing the model to answer simpler subquestions in separate contexts, we greatly increase the faithfulness of model-generated reasoning over CoT, while still achieving some of the performance gains of CoT. Our results show it is possible to improve the faithfulness of model-generated reasoning; continued improvements may lead to reasoning that enables us to verify the correctness and safety of LLM behavior. Externalized Reasoning Oversight Relies on Faithful Reasoning Large language models (LLMs) are operating in increasingly challenging domains, ranging from programming assistance (Chen et al., 2021) to open-ended internet research (Nakano et al., 2021) and scientific writing (Taylor et al., 2022). However, verifying model behavior for safety and correctness becomes increasingly difficult as the difficulty of tasks increases. To make model behavior easier to check, one promising approach is to prompt LLMs to produce step-by-s...

Duration

10 minutes

Parent Podcast

The Nonlinear Library: Alignment Forum Daily

View Podcast

Share this episode

Similar Episodes

    AMA: Paul Christiano, alignment researcher by Paul Christiano

    Release Date: 12/06/2021

    Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: AMA: Paul Christiano, alignment researcher, published by Paul Christiano on the AI Alignment Forum. I'll be running an Ask Me Anything on this post from Friday (April 30) to Saturday (May 1). If you want to ask something just post a top-level comment; I'll spend at least a day answering questions. You can find some background about me here. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.

    Explicit: No

    What is the alternative to intent alignment called? Q by Richard Ngo

    Release Date: 11/17/2021

    Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: What is the alternative to intent alignment called? Q, published by Richard Ngo on the AI Alignment Forum. Paul defines intent alignment of an AI A to a human H as the criterion that A is trying to do what H wants it to do. What term do people use for the definition of alignment in which A is trying to achieve H's goals (whether or not H intends for A to achieve H's goals)? Secondly, this seems to basically map on to the distinction between an aligned genie and an aligned sovereign. Is this a fair characterisation? (Intent alignment definition from) Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.

    Explicit: No

    AI alignment landscape by Paul Christiano

    Release Date: 11/19/2021

    Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: AI alignment landscape, published byPaul Christiano on the AI Alignment Forum. Here (link) is a talk I gave at EA Global 2019, where I describe how intent alignment fits into the broader landscape of “making AI go well,” and how my work fits into intent alignment. This is particularly helpful if you want to understand what I’m doing, but may also be useful more broadly. I often find myself wishing people were clearer about some of these distinctions. Here is the main overview slide from the talk: The highlighted boxes are where I spend most of my time. Here are the full slides from the talk. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.

    Explicit: No

    Would an option to publish to AF users only be a useful feature?Q by Richard Ngo

    Release Date: 11/17/2021

    Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Would an option to publish to AF users only be a useful feature?Q , published by Richard Ngo on the AI Alignment Forum. Right now there are quite a few private safety docs floating around. There's evidently demand for a privacy setting lower than "only people I personally approve", but higher than "anyone on the internet gets to see it". But this means that safety researchers might not see relevant arguments and information. And as the field grows, passing on access to such documents on a personal basis will become even less efficient. My guess is that in most cases, the authors of these documents don't have a problem with other safety researchers seeing them, as long as everyone agrees not to distribute them more widely. One solution could be to have a checkbox for new posts which makes them only visible to verified Alignment Forum users. Would people use this? Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.

    Explicit: No

Similar Podcasts

    The Nonlinear Library

    Release Date: 10/07/2021

    Authors: The Nonlinear Fund

    Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org

    Explicit: No

    The Nonlinear Library: Alignment Section

    Release Date: 02/10/2022

    Authors: The Nonlinear Fund

    Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org

    Explicit: No

    The Nonlinear Library: LessWrong

    Release Date: 03/03/2022

    Authors: The Nonlinear Fund

    Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org

    Explicit: No

    The Nonlinear Library: LessWrong Daily

    Release Date: 05/02/2022

    Authors: The Nonlinear Fund

    Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org

    Explicit: No

    The Nonlinear Library: EA Forum Daily

    Release Date: 05/02/2022

    Authors: The Nonlinear Fund

    Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org

    Explicit: No

    The Nonlinear Library: Alignment Forum Weekly

    Release Date: 05/02/2022

    Authors: The Nonlinear Fund

    Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org

    Explicit: No

    The Nonlinear Library: EA Forum Weekly

    Release Date: 05/02/2022

    Authors: The Nonlinear Fund

    Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org

    Explicit: No

    The Nonlinear Library: LessWrong Weekly

    Release Date: 05/02/2022

    Authors: The Nonlinear Fund

    Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org

    Explicit: No

    The Nonlinear Library: Alignment Forum Top Posts

    Release Date: 02/10/2022

    Authors: The Nonlinear Fund

    Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio.

    Explicit: No

    The Nonlinear Library: LessWrong Top Posts

    Release Date: 02/15/2022

    Authors: The Nonlinear Fund

    Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio.

    Explicit: No

    sasodgy

    Release Date: 04/14/2021

    Description: Audio Recordings from the Students Against Sexual Orientation Discrimination (SASOD) Public Forum with Members of Parliament at the National Library in Georgetown, Guyana

    Explicit: No