AF - QAPR 5: grokking is maybe not that big a deal? by Quintin Pope
<a href="https://www.alignmentforum.org/posts/GpSzShaaf8po4rcmA/qapr-5-grokking-is-maybe-not-that-big-a-deal">Link to original article</a><br/><br/>Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: QAPR 5: grokking is maybe not that big a deal?, published by Quintin Pope on July 23, 2023 on The AI Alignment Forum. [Thanks to support from Cavendish Labs and a Lightspeed grant, .I've been able to restart the Quintin's Alignment Papers Roundup sequence.] Introduction Grokking refers to an observation by Power et al. (below) that models trained on simple modular arithmetic tasks would first overfit to their training data and achieve nearly perfect training loss, but that training well past the point of overfitting would eventually cause the models to generalize to unseen test data. The rest of this post discusses a number of recent papers on grokking. Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets In this paper we propose to study generalization of neural networks on small algorithmically generated datasets. In this setting, questions about data efficiency, memorization, generalization, and speed of learning can be studied in great detail. In some situations we show that neural networks learn through a process of "grokking" a pattern in the data, improving generalization performance from random chance level to perfect generalization, and that this improvement in generalization can happen well past the point of overfitting. We also study generalization as a function of dataset size and find that smaller datasets require increasing amounts of optimization for generalization. We argue that these datasets provide a fertile ground for studying a poorly understood aspect of deep learning: generalization of overparametrized neural networks beyond memorization of the finite training dataset. My opinion: When I first read this paper, I was very excited. It seemed like a pared-down / "minimal" example that could let us study the underlying mechanism behind neural network generalization. You can read more of my initial opinion on grokking in the post Hypothesis: gradient descent prefers general circuits. I now think I was way too excited about this paper, that grokking is probably a not-particularly-important optimization artifact, and that grokking is no more connected to the "core" of deep learning generalization than, say, the fact that it's possible for deep learning to generalize from an MNIST training set to the testing set. I also think that using the word "grokking" was anthropomorphizing and potentially misleading (like calling the adaptive information routing component of a transformer model its "attention"). Evocative names risk letting the connotations of the name filter into the analysis of the object being named. E.g., "Grokking" brings connotations of sudden realization, despite the fact that the grokking phase in the above plot starts within the first ~5% - 20% of the training process, though it appears much more abrupt due to the use of a base 10 logarithmic scale on the x-axis. "Grokking" also brings connotations of insight, realization or improvement relative to some previously confused baseline. This leads to the impression that things which grok are better than things which don't. Humans often use the word "grokking" to mean deeply understanding complex domains that actually matter in the real world. Using the same word in an ML context suggests that ML grokking is relevant to whatever mechanisms might let an ML system deeply understand complex domains that actually matter in the real world. I've heard several people say things like: Studying grokking could significantly advance ML capabilities, if doing so were to lead to a deeper understanding of the mechanisms underlying generalization in ML. Training long enough could eventually result in grokking occurring in ML domains of actual relevance, such as language, and thereby lead to sudden capabilities gains or break alignment properties. Grokking is an example of how thinking l...
First published
07/23/2023
Genres:
education
Listen to this episode
Summary
Link to original articleWelcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: QAPR 5: grokking is maybe not that big a deal?, published by Quintin Pope on July 23, 2023 on The AI Alignment Forum. [Thanks to support from Cavendish Labs and a Lightspeed grant, .I've been able to restart the Quintin's Alignment Papers Roundup sequence.] Introduction Grokking refers to an observation by Power et al. (below) that models trained on simple modular arithmetic tasks would first overfit to their training data and achieve nearly perfect training loss, but that training well past the point of overfitting would eventually cause the models to generalize to unseen test data. The rest of this post discusses a number of recent papers on grokking. Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets In this paper we propose to study generalization of neural networks on small algorithmically generated datasets. In this setting, questions about data efficiency, memorization, generalization, and speed of learning can be studied in great detail. In some situations we show that neural networks learn through a process of "grokking" a pattern in the data, improving generalization performance from random chance level to perfect generalization, and that this improvement in generalization can happen well past the point of overfitting. We also study generalization as a function of dataset size and find that smaller datasets require increasing amounts of optimization for generalization. We argue that these datasets provide a fertile ground for studying a poorly understood aspect of deep learning: generalization of overparametrized neural networks beyond memorization of the finite training dataset. My opinion: When I first read this paper, I was very excited. It seemed like a pared-down / "minimal" example that could let us study the underlying mechanism behind neural network generalization. You can read more of my initial opinion on grokking in the post Hypothesis: gradient descent prefers general circuits. I now think I was way too excited about this paper, that grokking is probably a not-particularly-important optimization artifact, and that grokking is no more connected to the "core" of deep learning generalization than, say, the fact that it's possible for deep learning to generalize from an MNIST training set to the testing set. I also think that using the word "grokking" was anthropomorphizing and potentially misleading (like calling the adaptive information routing component of a transformer model its "attention"). Evocative names risk letting the connotations of the name filter into the analysis of the object being named. E.g., "Grokking" brings connotations of sudden realization, despite the fact that the grokking phase in the above plot starts within the first ~5% - 20% of the training process, though it appears much more abrupt due to the use of a base 10 logarithmic scale on the x-axis. "Grokking" also brings connotations of insight, realization or improvement relative to some previously confused baseline. This leads to the impression that things which grok are better than things which don't. Humans often use the word "grokking" to mean deeply understanding complex domains that actually matter in the real world. Using the same word in an ML context suggests that ML grokking is relevant to whatever mechanisms might let an ML system deeply understand complex domains that actually matter in the real world. I've heard several people say things like: Studying grokking could significantly advance ML capabilities, if doing so were to lead to a deeper understanding of the mechanisms underlying generalization in ML. Training long enough could eventually result in grokking occurring in ML domains of actual relevance, such as language, and thereby lead to sudden capabilities gains or break alignment properties. Grokking is an example of how thinking l...
Duration
16 minutes
Parent Podcast
The Nonlinear Library: Alignment Forum Daily
View PodcastSimilar Episodes
AMA: Paul Christiano, alignment researcher by Paul Christiano
Release Date: 12/06/2021
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: AMA: Paul Christiano, alignment researcher, published by Paul Christiano on the AI Alignment Forum. I'll be running an Ask Me Anything on this post from Friday (April 30) to Saturday (May 1). If you want to ask something just post a top-level comment; I'll spend at least a day answering questions. You can find some background about me here. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
Explicit: No
What is the alternative to intent alignment called? Q by Richard Ngo
Release Date: 11/17/2021
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: What is the alternative to intent alignment called? Q, published by Richard Ngo on the AI Alignment Forum. Paul defines intent alignment of an AI A to a human H as the criterion that A is trying to do what H wants it to do. What term do people use for the definition of alignment in which A is trying to achieve H's goals (whether or not H intends for A to achieve H's goals)? Secondly, this seems to basically map on to the distinction between an aligned genie and an aligned sovereign. Is this a fair characterisation? (Intent alignment definition from) Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
Explicit: No
AI alignment landscape by Paul Christiano
Release Date: 11/19/2021
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: AI alignment landscape, published byPaul Christiano on the AI Alignment Forum. Here (link) is a talk I gave at EA Global 2019, where I describe how intent alignment fits into the broader landscape of “making AI go well,” and how my work fits into intent alignment. This is particularly helpful if you want to understand what I’m doing, but may also be useful more broadly. I often find myself wishing people were clearer about some of these distinctions. Here is the main overview slide from the talk: The highlighted boxes are where I spend most of my time. Here are the full slides from the talk. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
Explicit: No
Would an option to publish to AF users only be a useful feature?Q by Richard Ngo
Release Date: 11/17/2021
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Would an option to publish to AF users only be a useful feature?Q , published by Richard Ngo on the AI Alignment Forum. Right now there are quite a few private safety docs floating around. There's evidently demand for a privacy setting lower than "only people I personally approve", but higher than "anyone on the internet gets to see it". But this means that safety researchers might not see relevant arguments and information. And as the field grows, passing on access to such documents on a personal basis will become even less efficient. My guess is that in most cases, the authors of these documents don't have a problem with other safety researchers seeing them, as long as everyone agrees not to distribute them more widely. One solution could be to have a checkbox for new posts which makes them only visible to verified Alignment Forum users. Would people use this? Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
Explicit: No
Similar Podcasts
The Nonlinear Library
Release Date: 10/07/2021
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: Alignment Section
Release Date: 02/10/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: LessWrong
Release Date: 03/03/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: LessWrong Daily
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: EA Forum Daily
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: Alignment Forum Weekly
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: EA Forum Weekly
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: LessWrong Weekly
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: Alignment Forum Top Posts
Release Date: 02/10/2022
Authors: The Nonlinear Fund
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio.
Explicit: No
The Nonlinear Library: LessWrong Top Posts
Release Date: 02/15/2022
Authors: The Nonlinear Fund
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio.
Explicit: No
sasodgy
Release Date: 04/14/2021
Description: Audio Recordings from the Students Against Sexual Orientation Discrimination (SASOD) Public Forum with Members of Parliament at the National Library in Georgetown, Guyana
Explicit: No