AF - Thoughts on the impact of RLHF research by Paul Christiano
<a href="https://www.alignmentforum.org/posts/vwu4kegAEZTBtpT6p/thoughts-on-the-impact-of-rlhf-research">Link to original article</a><br/><br/>Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Thoughts on the impact of RLHF research, published by Paul Christiano on January 25, 2023 on The AI Alignment Forum. In this post I’m going to describe my basic justification for working on RLHF in 2017-2020, which I still stand behind. I’ll discuss various arguments that RLHF research had an overall negative impact and explain why I don’t find them persuasive. I'll also clarify that I don't think research on RLHF is automatically net positive; alignment research should address real alignment problems, and we should reject a vague association between "RLHF progress" and "alignment progress." Background on my involvement in RLHF work Here are some background views about alignment I held in 2015 and still hold today. I expect disagreements about RLHF will come down to disagreements about this background: The simplest plausible strategies for alignment involve humans (maybe with the assistance of AI systems) evaluating a model’s actions based on how much we expect to like their consequences, and then training the models to produce highly-evaluated actions. (This is in contrast with, for example, trying to formally specify the human utility function, or notions of corrigibility / low-impact / etc, in some way.) Simple versions of this approach are expected to run into difficulties, and potentially to be totally unworkable, because: Evaluating consequences is hard. A treacherous turn can cause trouble too quickly to detect or correct even if you are able to do so, and it’s challenging to evaluate treacherous turn probability at training time. It’s very unclear if those issues are fatal before or after AI systems are powerful enough to completely transform human society (and in particular the state of AI alignment). Even if they are fatal, many of the approaches to resolving them still have the same basic structure of learning from expensive evaluations of actions. In order to overcome the fundamental difficulties with RLHF, I have long been interested in techniques like iterated amplification and adversarial training. However, prior to 2017 most researchers I talked to in ML (and many researchers in alignment) thought that the basic strategy of training AI with expensive human evaluations was impractical for more boring reasons and so weren't interested in these difficulties. On top of that, we obviously weren’t able to actually implement anything more fancy than RLHF since all of these methods involve learning from expensive feedback. I worked on RLHF work to try to facilitate and motivate work on fixes. The history of my involvement: My first post on this topic was in 2015. When I started full-time at OpenAI in 2017 it seemed to me like it would be an impactful project; I considered doing a version with synthetic human feedback (showing that we could learn from a practical amount of algorithmically-defined feedback) but my manager Dario Amodei convinced me it would be more compelling to immediately go for human feedback. The initial project was surprisingly successful and published here. I then intended to implement a version with language models aiming to be complete in the first half of 2018 (aiming to build an initial amplification prototype with LMs around end of 2018; both of these timelines were about 2.5x too optimistic). This seemed like the most important domain to study RLHF and alignment more broadly. In mid-2017 Alec Radford helped me do a prototype with LSTM language models (prior to the release of transformers); the prototype didn’t look promising enough to scale up. In mid-2017 Geoffrey Irving joined OpenAI and was excited about starting with RLHF and then going beyond it using debate; he also thought language models were the most important domain to study and had more conviction about that. In 2018 he started a larger team working on fine-tuning on langu...
First published
01/25/2023
Genres:
education
Listen to this episode
Summary
Link to original articleWelcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Thoughts on the impact of RLHF research, published by Paul Christiano on January 25, 2023 on The AI Alignment Forum. In this post I’m going to describe my basic justification for working on RLHF in 2017-2020, which I still stand behind. I’ll discuss various arguments that RLHF research had an overall negative impact and explain why I don’t find them persuasive. I'll also clarify that I don't think research on RLHF is automatically net positive; alignment research should address real alignment problems, and we should reject a vague association between "RLHF progress" and "alignment progress." Background on my involvement in RLHF work Here are some background views about alignment I held in 2015 and still hold today. I expect disagreements about RLHF will come down to disagreements about this background: The simplest plausible strategies for alignment involve humans (maybe with the assistance of AI systems) evaluating a model’s actions based on how much we expect to like their consequences, and then training the models to produce highly-evaluated actions. (This is in contrast with, for example, trying to formally specify the human utility function, or notions of corrigibility / low-impact / etc, in some way.) Simple versions of this approach are expected to run into difficulties, and potentially to be totally unworkable, because: Evaluating consequences is hard. A treacherous turn can cause trouble too quickly to detect or correct even if you are able to do so, and it’s challenging to evaluate treacherous turn probability at training time. It’s very unclear if those issues are fatal before or after AI systems are powerful enough to completely transform human society (and in particular the state of AI alignment). Even if they are fatal, many of the approaches to resolving them still have the same basic structure of learning from expensive evaluations of actions. In order to overcome the fundamental difficulties with RLHF, I have long been interested in techniques like iterated amplification and adversarial training. However, prior to 2017 most researchers I talked to in ML (and many researchers in alignment) thought that the basic strategy of training AI with expensive human evaluations was impractical for more boring reasons and so weren't interested in these difficulties. On top of that, we obviously weren’t able to actually implement anything more fancy than RLHF since all of these methods involve learning from expensive feedback. I worked on RLHF work to try to facilitate and motivate work on fixes. The history of my involvement: My first post on this topic was in 2015. When I started full-time at OpenAI in 2017 it seemed to me like it would be an impactful project; I considered doing a version with synthetic human feedback (showing that we could learn from a practical amount of algorithmically-defined feedback) but my manager Dario Amodei convinced me it would be more compelling to immediately go for human feedback. The initial project was surprisingly successful and published here. I then intended to implement a version with language models aiming to be complete in the first half of 2018 (aiming to build an initial amplification prototype with LMs around end of 2018; both of these timelines were about 2.5x too optimistic). This seemed like the most important domain to study RLHF and alignment more broadly. In mid-2017 Alec Radford helped me do a prototype with LSTM language models (prior to the release of transformers); the prototype didn’t look promising enough to scale up. In mid-2017 Geoffrey Irving joined OpenAI and was excited about starting with RLHF and then going beyond it using debate; he also thought language models were the most important domain to study and had more conviction about that. In 2018 he started a larger team working on fine-tuning on langu...
Duration
14 minutes
Parent Podcast
The Nonlinear Library: Alignment Forum Weekly
View PodcastSimilar Episodes
AMA: Paul Christiano, alignment researcher by Paul Christiano
Release Date: 12/06/2021
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: AMA: Paul Christiano, alignment researcher, published by Paul Christiano on the AI Alignment Forum. I'll be running an Ask Me Anything on this post from Friday (April 30) to Saturday (May 1). If you want to ask something just post a top-level comment; I'll spend at least a day answering questions. You can find some background about me here. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
Explicit: No
What is the alternative to intent alignment called? Q by Richard Ngo
Release Date: 11/17/2021
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: What is the alternative to intent alignment called? Q, published by Richard Ngo on the AI Alignment Forum. Paul defines intent alignment of an AI A to a human H as the criterion that A is trying to do what H wants it to do. What term do people use for the definition of alignment in which A is trying to achieve H's goals (whether or not H intends for A to achieve H's goals)? Secondly, this seems to basically map on to the distinction between an aligned genie and an aligned sovereign. Is this a fair characterisation? (Intent alignment definition from) Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
Explicit: No
AI alignment landscape by Paul Christiano
Release Date: 11/19/2021
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: AI alignment landscape, published byPaul Christiano on the AI Alignment Forum. Here (link) is a talk I gave at EA Global 2019, where I describe how intent alignment fits into the broader landscape of “making AI go well,” and how my work fits into intent alignment. This is particularly helpful if you want to understand what I’m doing, but may also be useful more broadly. I often find myself wishing people were clearer about some of these distinctions. Here is the main overview slide from the talk: The highlighted boxes are where I spend most of my time. Here are the full slides from the talk. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
Explicit: No
Would an option to publish to AF users only be a useful feature?Q by Richard Ngo
Release Date: 11/17/2021
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Would an option to publish to AF users only be a useful feature?Q , published by Richard Ngo on the AI Alignment Forum. Right now there are quite a few private safety docs floating around. There's evidently demand for a privacy setting lower than "only people I personally approve", but higher than "anyone on the internet gets to see it". But this means that safety researchers might not see relevant arguments and information. And as the field grows, passing on access to such documents on a personal basis will become even less efficient. My guess is that in most cases, the authors of these documents don't have a problem with other safety researchers seeing them, as long as everyone agrees not to distribute them more widely. One solution could be to have a checkbox for new posts which makes them only visible to verified Alignment Forum users. Would people use this? Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
Explicit: No
Similar Podcasts
The Nonlinear Library
Release Date: 10/07/2021
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: Alignment Section
Release Date: 02/10/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: LessWrong
Release Date: 03/03/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: LessWrong Daily
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: EA Forum Daily
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: EA Forum Weekly
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: Alignment Forum Daily
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: LessWrong Weekly
Release Date: 05/02/2022
Authors: The Nonlinear Fund
Description: The Nonlinear Library allows you to easily listen to top EA and rationalist content on your podcast player. We use text-to-speech software to create an automatically updating repository of audio content from the EA Forum, Alignment Forum, LessWrong, and other EA blogs. To find out more, please visit us at nonlinear.org
Explicit: No
The Nonlinear Library: Alignment Forum Top Posts
Release Date: 02/10/2022
Authors: The Nonlinear Fund
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio.
Explicit: No
The Nonlinear Library: LessWrong Top Posts
Release Date: 02/15/2022
Authors: The Nonlinear Fund
Description: Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio.
Explicit: No
sasodgy
Release Date: 04/14/2021
Description: Audio Recordings from the Students Against Sexual Orientation Discrimination (SASOD) Public Forum with Members of Parliament at the National Library in Georgetown, Guyana
Explicit: No